Add like
Add dislike
Add to saved papers

Conductivity enhancement of silver nanowire networks via simple electrolyte solution treatment and solvent washing.

Nanotechnology 2018 June 30
As a promising replacement material for indium tin oxide in flexible electronics, silver nanowires (AgNWs) usually need complicated post-treatment to reduce the high contact resistance across the intersections when used as transparent conductive films. In this work, a widely applicable nano-joining method for improving the overall conductivity of AgNW networks with different kinds of electrolyte solutions is presented. By treatment with an electrolyte solution with appropriate ionic strengths, the insulating surfactant layer (polyvinylpyrrolidone, PVP) on the AgNWs could be desorbed, and the AgNW network could be densified. The sheet resistance of the AgNW film on a glass slide is reduced by 60.9% (from 67.5 to 26.4 Ohm sq-1 ) with a transmittance of 92.5%. High-resolution transmission electron microscopy analysis indicates that atomic diffusion occurs at the intersection of two AgNWs. Thus, metallurgical bonding on the nanometer scale is achieved across the junctions of the AgNWs, leading to a significant enhancement in the conductivity of the AgNW network.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app