JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
Add like
Add dislike
Add to saved papers

Low-carbohydrate, ketogenic diet impairs anaerobic exercise performance in exercise-trained women and men: a randomized-sequence crossover trial.

BACKGROUND: Low-carbohydrate, ketogenic diets cause mild, subclinical systemic acidosis. Anaerobic exercise performance is limited by acidosis. Therefore, we evaluated the hypothesis that a low-carbohydrate, ketogenic diet impairs anaerobic exercise performance, as compared to a high-carbohydrate diet.

METHODS: Sixteen men and women (BMI, 23±1 kg/m2, age 23±1 years) participated in a randomized-sequence, counterbalanced crossover study in which they underwent exercise testing after 4 days of either a low-carbohydrate, ketogenic diet (LC; <50 g/day and <10% of energy from carbohydrates) or a high-carbohydrate diet (HC; 6-10 g/kg/day carbohydrate). Dietary compliance was assessed with nutrient analysis of diet records, and with measures of urine pH and ketones. Anaerobic exercise performance was evaluated with the Wingate anaerobic cycling test and the yo-yo intermittent recovery test.

RESULTS: The diets were matched for total energy (LC: 2333±158 kcal/d; HC: 2280±160 kcal/d; P=0.65) but differed in carbohydrate content (9±1% vs. 63±2% of energy intake; P<0.001). LC resulted in lower urine pH (5.9±0.1 vs. 6.3±0.2, P=0.004) and the appearance of urine ketones in every participant. LC resulted in 7% lower peak power (801±58 watts vs. 857±61 watts, P=0.008) and 6% lower mean power (564±50 watts vs. 598±51 watts, P=0.01) during the Wingate Test. Total distance ran in the yo-yo intermittent recovery test was 15% less after LC diet (887±139 vs. 1045±145 meters, P=0.02).

CONCLUSIONS: Short-term low-carbohydrate, ketogenic diets reduce exercise performance in activities that are heavily dependent on anaerobic energy systems. These findings have clear performance implications for athletes, especially for high-intensity, short duration activities and sports.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app