Add like
Add dislike
Add to saved papers

Assessment of cerebral hemodynamic parameters using pulsatile versus non-pulsatile cerebral blood outflow models.

BACKGROUND: Prior methods evaluating the changes in cerebral arterial blood volume (∆Ca BV) assumed that brain blood transport distal to big cerebral arteries can be approximated with a non-pulsatile flow (CFF) model. In this study, a modified ∆Ca BV calculation that accounts for pulsatile blood flow forward (PFF) from large cerebral arteries to resistive arterioles was investigated. The aim was to assess cerebral hemodynamic indices estimated by both CFF and PFF models while changing arterial blood carbon dioxide concentration (EtCO2 ) in healthy volunteers.

MATERIALS AND METHODS: Continuous recordings of non-invasive arterial blood pressure (ABP), transcranial Doppler blood flow velocity (CBFVa ), and EtCO2 were performed in 53 young volunteers at baseline and during both hypo- and hypercapnia. The time constant of the cerebral arterial bed (τ) and critical closing pressure (CrCP) were estimated using mathematical transformations of the pulse waveforms of ABP and CBFVa , and with both pulsatile and non-pulsatile models of ∆Ca BV estimation. Results are presented as median values ± interquartile range.

RESULTS: Both CrCP and τ gave significantly lower values with the PFF model when compared with the CFF model (p ≪ 0.001 for both). In comparison to normocapnia, both CrCP and τ determined with the PFF model increased during hypocapnia [CrCPPFF (mm Hg): 5.52 ± 8.78 vs. 14.36 ± 14.47, p = 0.00006; τPFF (ms): 47.4 ± 53.9 vs. 72.8 ± 45.7, p = 0.002] and decreased during hypercapnia [CrCPPFF (mm Hg): 5.52 ± 8.78 vs. 2.36 ± 7.05, p = 0.0001; τPFF (ms): 47.4 ± 53.9 vs. 29.0 ± 31.3, p = 0.0003]. When the CFF model was applied, no changes were found for CrCP during hypercapnia or in τ during hypocapnia.

CONCLUSION: Our results suggest that the pulsatile flow forward model better reflects changes in CrCP and in τ induced by controlled alterations in EtCO2 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app