Add like
Add dislike
Add to saved papers

Stimuli-Directed Dynamic Reconfiguration in Self-Organized Helical Superstructures Enabled by Chemical Kinetics of Chiral Molecular Motors.

Dynamic controllability of self-organized helical superstructures in spatial dimensions is a key step to promote bottom-up artificial nanoarchitectures and functional devices for diverse applications in a variety of areas. Here, a light-driven chiral overcrowded alkene molecular motor with rod-like substituent is designed and synthesized, and its thermal isomerization reaction exhibits an increasing structural entropy effect on chemical kinetic analysis in anisotropic achiral liquid crystal host than that in isotropic organic liquid. Interestingly, the stimuli-directed angular orientation motion of helical axes in the self-organized helical superstructures doped with the chiral motors enables the dynamic reconfiguration between the planar (thermostationary) and focal conic (photostationary) states. The reversible micromorphology deformation processes are compatible with the free energy fluctuation of self-organized helical superstructures and the chemical kinetics of chiral motors under different conditions. Furthermore, stimuli-directed reversible nonmechanical beam steering is achieved in dynamic hidden periodic photopatterns with reconfigurable attributes prerecorded with a corresponding photomask and photoinduced polymerization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app