Add like
Add dislike
Add to saved papers

Mitochondrial dysfunction in cumulus-oocyte complexes increases cell-free mitochondrial DNA.

This study examined the concentration of cell-free mitochondrial DNA (cf-mtDNA) in porcine follicular fluid (FF) and explored whether the cfDNA level in the culture medium could reflect mitochondrial dysfunction in cumulus cell-oocyte complexes (COCs). cfDNA concentration was higher in the fluid of small-sized follicles, compared to that in larger follicles. The length of cfDNA ranged from short (152 bp) to long (1,914 bp) mtDNA in FF, detected by polymerase chain reaction (PCR). cfDNA concentration in FF significantly correlated with the mtDNA copy number in FF but not with the number of one-copy gene (nuclear DNA) in FF. When the COCs were treated with the mitochondrial uncoupler, namely carbonyl cyanide m-chlorophenyl hydrazone (CCCP), for 2 h and incubated for 42 h, subsequent real-time PCR detected significantly higher amount of cf-mtDNA, compared to nuclear cfDNA, in the spent culture medium. The mtDNA number and viability of cumulus cells and oocytes remained unchanged. When the oocytes were denuded from the cumulus cells following CCCP treatment, PCR detected very low levels of cfDNA in the spent culture medium of the denuded oocytes. In contrast, CCCP treatment of granulosa cells significantly increased the amount of cf-mtDNA in the spent culture medium, without any effect on other markers, including survival rate, apoptosis of cumulus cells, and lactate dehydrogenase levels. Thus, cf-mtDNA was present in FF in a wide range of length, and mitochondrial dysfunction in COCs increased the active secretion of cf-mtDNA in the cultural milieu.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app