Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Novel Measure of Local Impedance Predicts Catheter-Tissue Contact and Lesion Formation.

BACKGROUND: Coupling between the ablation catheter and myocardium is critical to resistively heat tissue with radiofrequency ablation. The objective of this study was to evaluate whether a novel local impedance (LI) measurement on an ablation catheter identifies catheter-tissue coupling and is predictive of lesion formation.

METHODS AND RESULTS: LI was studied in explanted hearts (n=10 swine) and in vivo (n=10; 50-70 kg swine) using an investigational electroanatomic mapping system that measures impedance from an ablation catheter with mini-electrodes incorporated in the distal electrode (Rhythmia and IntellaNav MiFi OI, Boston Scientific). Explanted tissue was placed in a warmed (37 °C) saline bath mounted on a scale, and LI was measured 15 mm away from tissue to 5 mm of catheter-tissue compression at multiple catheter angles. Lesions were created with 31 and 50 W for 5 to 45 seconds (n=90). During in vivo evaluation of LI, measurements of myocardium (n=90) and blood pool (n=30) were guided by intracardiac ultrasound while operators were blinded to LI data. Lesions were created with 31 and 50 W for 45 seconds in the ventricles (n=72). LI of myocardium (119.7 Ω) was significantly greater than that of blood pool (67.6 Ω; P <0.01). Models that incorporate LI drop (ΔLI) to predict lesion size had better performance than models that incorporate force-time integral ( R 2 =0.75 versus R 2 =0.54) and generator impedance drop ( R 2 =0.82 versus R 2 =0.58). Steam pops displayed a significantly higher starting LI and larger ΔLI compared with successful radiofrequency applications ( P <0.01).

CONCLUSIONS: LI recorded from miniature electrodes provides a valuable measure of catheter-tissue coupling, and ΔLI is predictive of lesion formation during radiofrequency ablation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app