Add like
Add dislike
Add to saved papers

Chloroplast genome analyses and genomic resource development for epilithic sister genera Oresitrophe and Mukdenia (Saxifragaceae), using genome skimming data.

BMC Genomics 2018 April 5
BACKGROUND: Epilithic sister genera Oresitrophe and Mukdenia (Saxifragaceae) have an epilithic habitat (rocky slopes) and a parapatric distribution in East Asia, which makes them an ideal model for a more comprehensive understanding of the demographic and divergence history and the influence of climate changes in East Asia. However, the genetic background and resources for these two genera are scarce.

RESULTS: The complete chloroplast (cp) genomes of two Oresitrophe rupifraga and one Mukdenia rossii individuals were reconstructed and comparative analyses were conducted to examine the evolutionary pattern of chloroplast genomes in Saxifragaceae. The cp genomes ranged from 156,738 bp to 156,960 bp in length and had a typical quadripartite structure with a conserved genome arrangement. Comparative analysis revealed the intron of rpl2 has been lost in Heuchera parviflora, Tiarella polyphylla, M. rossii and O. rupifraga but presents in the reference genome of Penthorum chinense. Seven cp hotspot regions (trnH-psbA, trnR-atpA, atpI-rps2, rps2-rpoC2, petN-psbM, rps4-trnT and rpl33-rps18) were identified between Oresitrophe and Mukdenia, while four hotspots (trnQ-psbK, trnR-atpA, trnS-psbZ and rpl33-rps18) were identified within Oresitrophe. In addition, 24 polymorphic cpSSR loci were found between Oresitrophe and Mukdenia. Most importantly, we successfully developed 126 intergeneric polymorphic gSSR markers between Oresitrophe and Mukdenia, as well as 452 intrageneric ones within Oresitrophe. Twelve randomly selected intergeneric gSSRs have shown that these two genera exhibit a significant genetic structure.

CONCLUSIONS: In this study, we conducted genome skimming for Oresitrophe rupifraga and Mukdenia rossii. Using these data, we were able to not only assemble their complete chloroplast genomes, but also develop abundant genetic resources (cp hotspots, cpSSRs, polymorphic gSSRs). The genomic patterns and genetic resources presented here will contribute to further studies on population genetics, phylogeny and conservation biology in Saxifragaceae.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app