Add like
Add dislike
Add to saved papers

Cassie-Levitated Droplets for Distortion-Free Low-Energy Solid-Liquid Interactions.

Despite the rapid advent of superomniphobic materials, there is a lack of methodologies to accurately investigate the ultralow-energy interactions taking place on these interfaces. For instance, universally employed models such as the pendant droplet often fail to provide representative information on the wetting properties of superomniphobic surfaces. The delicate balance between the forces acting at the droplet-surface and droplet-needle interfaces can easily result in heavily distorted droplet profiles. Here, we introduce a Cassie-levitating droplet model which overcomes the limitations of the pendant droplet model, allowing a distortion-free assessment of the interactions between super(amphi)omniphobic materials and low surface tension liquids. Comparative analysis in wetting of low surface tension fluids such as hexadecane (∼27.47 mN/m) on superamphiphobic surfaces via the Cassie-levitating and pendant droplet models reveals up to 70° (800%) deviations in the estimated contact angle hysteresis. A theoretical framework is developed to assess experimentally observed profile distortions against ideal gravity-induced sagging of droplet shapes during dynamic droplet expansion and contraction cycles. Notably, pendant droplets resulted in up to 50% distortion while the Cassie-levitating ones achieved less than just 10%. We believe that the Cassie-levitating droplet model bears ample potential for the characterization of the rapidly emerging family of superomniphobic materials, setting the basis for their future engineering in numerous emerging applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app