JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Stimuli-Responsive Functionalization Strategies to Spatially and Temporally Control Surface Properties: Michael vs Diels-Alder Type Additions.

Stimuli-responsive self-assembled monolayers (SAMs) are used to confer switchable physical, chemical, or biological properties to surfaces through the application of external stimuli. To obtain spatially and temporally tunable surfaces, we present microcontact printed SAMs of a hydroquinone molecule that are used as a dynamic interface to immobilize different functional molecules either via Diels-Alder or Michael thiol addition reactions upon the application of a low potential. In spite of the use of such reactions and the potential applicability of the resulting surfaces in different fields ranging from sensing to biomedicine through data storage or cleanup, a direct comparison of the two functionalization strategies on a surface has not yet been performed. Although the Michael thiol addition requires molecules that are commercial or easy to synthesize in comparison with the cyclopentadiene derivatives needed for the Diels-Alder reaction, the latter reaction produces more homogeneous coverages under similar experimental conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app