Add like
Add dislike
Add to saved papers

Recording characteristics of electrical impedance-electromyography needle electrodes.

OBJECTIVE: Needle EMG remains the standard clinical test for neuromuscular disease (NMD) assessment, but it only characterizes myofiber membrane depolarization. On the other hand, electrical impedance provides non-electrically active structural and compositional data of tissues. Here, we designed a prototype of needle electrode integrating electrical impedance and EMG measurement capabilities, the so-called I-EMG needle electrode.

APPROACH: We use finite element method models to study the impedance recording characteristics of I-EMG needle electrodes. The simulated electrical and mechanical design specifications are then manufactured to create a prototype of an I-EMG needle electrode. We pilot these new needle electrodes by conducting in vivo impedance measurements with muscle at rest on healthy wild-type (wt, n  =  5) and muscular dystrophy (mdx, n  =  5) mice. Comparisons between wt and mdx mice are performed using Mann-Whitney test, two-tailed, p  <  0.05. The electrical characterization of the EMG electrode in the developed I-EMG needles was performed in vitro on saline solution and through EMG detection in wt animal at rest and during voluntary contractions.

RESULTS: Muscle impedance demonstrate good repeatability (p  <  0.05 and p  <  0.005 for resistance and reactance at 50 kHz, respectively) and agreement between different I-EMG needles. Impedance data allows us to discriminate between mdx and wt muscle (p  <  0.05 and p  <  0.005 for resistance and reactance at 10 kHz, respectively). EMG broadband noise power and peak amplitude using the I-EMG needle were similar to that of a commercial monopolar EMG needle. EMG recordings using the I-EMG needle measured electrical activity similar to a standard monopolar needle with muscle at rest and during voluntary contraction.

SIGNIFICANCE: Needle I-EMG technology may offer the opportunity to enhance the diagnostic capability and quantification of NMD beyond that possible with either impedance or EMG techniques separately. Ultimately, needle I-EMG could serve as a new bedside tool to assess NMD without increasing the complexity or duration of the EMG test.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app