Add like
Add dislike
Add to saved papers

MiR-181a inhibits human trabecular meshwork cell apoptosis induced by H₂O₂ through the suppression of NF-κB and JNK pathways.

BACKGROUND: The trabecular meshwork (TM) plays a critical role in the outflow of aqueous humor.

OBJECTIVES: In this study, we aimed to investigate the effect of miR-181a on H2O2-induced apoptosis in TM cells.

MATERIAL AND METHODS: Human primary explant-derived TM cells were cultured in fibroblast medium and then treated with different concentrations of H2O2 for 2 h. We used a series of methods to carry out the research, such as MTT assay, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), apoptosis assay, and western blot methodology.

RESULTS: The apoptosis assay and qRT-PCR showed that H2O2-induced apoptosis and cell viability were suppressed in a dose-dependent manner in TM cells. After the TM cells were treated with H2O2, miR-181a expression was significantly lower. The overexpression of miR-181a enhanced TM cells' viability, while the knockdown of miR-181a inhibited viability of cells. The overexpression of miR-181a suppressed TM cell apoptosis, while the knockdown of miR-181a induced apoptosis. H2O2 activated the nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) pathways and induced cell apoptosis, while the overexpression of miR-181a suppressed both pathways and decreased the rate of apoptosis.

CONCLUSIONS: In conclusion, this study indicated that miR-181a could improve the survival rate of TM cells after H2O2 treatment by blocking the NF-κB and JNK signaling pathways. These findings might provide novel therapeutic opportunities in the treatment of glaucoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app