Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Self-Assembly and Functions of Star-Shaped Oligomeric Surfactants.

Oligomeric surfactants consist of three or more amphiphilic moieties which are connected by spacer groups covalently at the level of headgroups. It provides a possible route to bridge the gap from conventional single-chain surfactants to polymeric surfactants and leads to many profound improvements in the properties of surfactants in aqueous solution and at the air/water and water/solid interfaces. Generally, oligomeric surfactants are categorized into linear, ring-like, and star-shaped on the basis of the topological structures of their spacer groups, and their aggregation behavior strongly depends on the resultant topological structures. In recent years, we studied trimeric, tetrameric, and hexameric surfactants with a star-shaped spacer which spreads from a central site of elemental nitrogen or carbon, and their charged headgroups connect with each other through the spacers. It has been found that both the nature of spacer groups and the degree of oligomerization show important influences on the self-assembly of oligomeric surfactants and provide great possibilities in fabricating various surfactant aggregate morphologies by adjusting the molecule conformations. The unique self-assembly behavior endows them with superior physicochemical properties and potential applications. This feature article summarizes the development of star-shaped oligomeric surfactants, including self-assembly at the air/water and water/solid interfaces, self-assembly in aqueous solution, and their functions. We expect that this review could provide a comprehensive understanding of the structure-property relationship and various potential applications of star-shaped oligomeric surfactants and offer additional motivation for their future research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app