Add like
Add dislike
Add to saved papers

Polyunsaturated fatty acids from Phyllocaulis boraceiensis mucus block the replication of influenza virus.

Influenza viruses cause worldwide outbreaks and pandemics in humans and animals every year with considerable morbidity and mortality. The molecular diversity of secondary metabolites extracted from mollusks is a good alternative for the discovery of novel bioactive compounds with unique structures and diverse biological activities. Phyllocaulis boraceiensis is a hermaphroditic slug that exudes mucus, in which was detected hydroxy polyunsaturated fatty acids that exhibited potent antiviral activity against measles virus. The objective of this study was to evaluate this property against Influenza viruses. Cell viability and toxicity of the mucus were evaluated on Madin-Darby canine kidney (MDCK) cells by MTT assay. Antiviral activity from mucus against influenza viruses was carried out by determination of the virus infection dose and by immunofluorescence assays. The crude mucus and its fractions exhibited low cytotoxicity on MDCK cells. A significant inhibition of viral replication, reduced by the order of eight times, was observed in influenza-induced cytopathic effect. In immunofluorescence assay was observed a decrease of more than 80% of the viral load on infected MDCK cell treated with mucus and its fractions. The viral glycoproteins hemagglutinin and neuraminidase located on the surface of the virus are crucial for the replications and infectivity of the influenza virus. Some authors demonstrated that lipids, such as, polyunsaturated fatty acids exhibited multiple roles in antiviral innate and adaptive responses, control of inflammation, and in the development of antiviral therapeutics. As corroborated by other studies, hydroxy polyunsaturated fatty acids interfered with the binding of influenza virus on host cell receptor and reduced viral titers. The results obtained indicated that polyunsaturated fatty acids from P. boraceiensis crude mucus and fractions 39 exerted antiviral activity against influenza virus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app