Add like
Add dislike
Add to saved papers

Unfolded protein response is activated in Krabbe disease in a manner dependent on the mutation type.

Krabbe disease, one of the autosomal-recessive lysosomal storage disorders (LSDs), is caused by a deficiency of galactocerebrosidase (GALC) activity, resulting in the intracellular accumulation of psychosine, which is cytotoxic for neuronal cells. Genetically pathogenic mutations result in conformational changes in GALC and disrupt the lysosmal trafficking of cargos, which subsequently accumulate in the endoplasmic reticulum (ER). Recently, ER stress together with the activation of the unfolded protein response (UPR) has been suggested to play a key role in the pathogenesis of LSDs. In this study, we hence investigated whether the UPR is activated in Krabbe disease using COS-7 cells expressing pathogenic GALC mutants and skin fibroblasts (SFs) from Krabbe disease patients with various phenotypes, using a combination of semiquantitative and quantitative real-time polymerase chain reactions. We found that UPR activation in Krabbe disease depends on the mutations and cell types, and there is the possibility that multiple pathways, involving ER chaperones, inositol-requiring kinase 1, and protein kinase regulated by RNA-like ER kinase are activated by mutations associated with the infantile form. These results indicate that in Krabbe disease, each misfolded/unfolded protein evokes different UPR activation depending on the mutation, and that the activated pathways affect the phenotypes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app