Add like
Add dislike
Add to saved papers

A statistical method for analyzing and comparing spatiotemporal cortical activation patterns.

Scientific Reports 2018 April 4
Information in the cortex is encoded in spatiotemporal patterns of neuronal activity, but the exact nature of that code still remains elusive. While onset responses to simple stimuli are associated with specific loci in cortical sensory maps, it is completely unclear how the information about a sustained stimulus is encoded that is perceived for minutes or even longer, when discharge rates have decayed back to spontaneous levels. Using a newly developed statistical approach (multidimensional cluster statistics (MCS)) that allows for a comparison of clusters of data points in n-dimensional space, we here demonstrate that the information about long-lasting stimuli is encoded in the ongoing spatiotemporal activity patterns in sensory cortex. We successfully apply MCS to multichannel local field potential recordings in different rodent models and sensory modalities, as well as to human MEG and EEG data, demonstrating its universal applicability. MCS thus indicates novel ways for the development of powerful read-out algorithms of spatiotemporal brain activity that may be implemented in innovative brain-computer interfaces (BCI).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app