JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Prediction of treatment responses to neoadjuvant chemotherapy in triple-negative breast cancer by analysis of immune checkpoint protein expression.

BACKGROUND: "Avoiding immune destruction" has recently been established as one of the hallmarks of cancer. The programmed cell death (PD)-1/programmed cell death-ligand (PD-L) 1 pathway is an important immunosuppression mechanism that allows cancer cells to escape host immunity. The present study investigated how the expressions of these immune checkpoint proteins affected responses to neo-adjuvant chemotherapy (NAC) in breast cancer.

METHODS: A total of 177 patients with resectable early-stage breast cancer were treated with NAC. Estrogen receptor, progesteron receptor, human epidermal growth factor receptor 2, Ki67, PD-L1, PDL-2 and PD-1 status were assessed by immunohistochemistry.

RESULTS: There were 37 (20.9%) patients with high PD-1 expression, 42 (23.7%) patients had high PD-L1 expression, and 52 (29.4%) patients had high PD-L2 expression. The patients with high PD-1 and PD-L1 expressions had a significantly higher rate of triple-negative breast cancer (TNBC) (p = 0.041) (p < 0.001). In TNBC, patients with high PD-1 and PD-L1 expressions had significantly higher rates of non-pCR (p = 0.003) (p < 0.001). Univariate analysis showed that PD-1 and PD-L1 expressions also significantly shortened disease free survival in TNBC (p = 0.048, HR = 3.318) (p = 0.007, HR = 8.375). However, multivariate analysis found that only PD-L1 expression was an independent prognostic factor (p = 0.041, HR = 9.479).

CONCLUSIONS: PD-1 and PD-L1 expressions may be useful as biomarkers to predict treatment responses to NAC in breast cancer. Above all, PD-L1 expression may also be useful as biomarkers for more effective chemotherapy in TNBC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app