Add like
Add dislike
Add to saved papers

Propofol Disrupts Aerobic Glycolysis in Colorectal Cancer Cells via Inactivation of the NMDAR-CAMKII-ERK Pathway.

BACKGROUND/AIMS: To investigate the effect of propofol on glucose metabolism in colorectal cancer cells and in an in vivo xenograft model.

METHODS: Glucose metabolism was assessed by measuring the extracellular acidification rate in HT29 and SW480 colorectal cancer cells. Quantitative real-time PCR and western blot analyses were used to detect mRNA and protein levels, respectively. Intracellular calcium was assessed by using a Fluo-3 AM fluorescence kit. Micro-positron emission tomography/computed tomography (microPET/CT) imaging was used to analyze glucose metabolism in the tumors of the xenograft model.

RESULTS: Propofol exposure induced a dose-dependent decrease of aerobic glycolysis in HT29 and SW480 colorectal cancer cells. MicroPET/CT indicated that propofol also inhibited 18F-FDG uptake in the xenograft model. In addition, hypoxia-inducible factor 1α (HIF1α) was also reduced by propofol dose-dependently. Propofol repressed the NMDAR-CAMKII-ERK pathway to inactivate HIF1α and therefore reduced glycolysis.

CONCLUSION: Propofol inhibited aerobic glycolysis in colorectal cancer cells through the inactivation of the NMDAR-CAMKII-ERK pathway, which may facilitate a better understanding of the use of propofol in the clinical setting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app