JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Plasticity and biological diversity of myeloid derived suppressor cells.

Myeloid derived suppressor cells (MDSCs) are immature myeloid cells characterized by diverse phenotypes and functions. They impair effector functions of immune cells and promote tumor growth, angiogenesis, and tissue damage. In pathologies characterized by chronic inflammation, MDSCs are arrested in their immature state and migrate from the bone marrow to the periphery and to the site of inflammation, where they mediate immunosuppression. When reaching new environments, which exhibit a different array of cytokines, chemokines, and pro-inflammatory mediators, MDSCs sense and adapt to the altered micro-environment by virtue of acquiring different suppressive features/functions that involve changing their cell fate, surface receptors, metabolism and intracellular as well as secreted molecules. This review summarizes some of the latest publications highlighting various layers of MDSC plasticity in relation to different pathologies. We discuss treatments capitalizing on MDSC plasticity aimed at combating MDSCs or manipulating their suppressive activity for improved therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app