JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

IL-17 induces cellular stress microenvironment of melanocytes to promote autophagic cell apoptosis in vitiligo.

Vitiligo is a depigmentary disorder that develops as a result of the progressive disappearance of epidermal melanocytes. Stress can precipitate or exacerbate a skin disease through psychosomatic mechanisms. Stress exposure induces vitiligo-like symptoms in mice, as cellular damage to melanocytes causes synthetic pigment loss. Stress also increases IL-17, IL-1β, and antimelanocyte IgG in model mouse serum. Up-regulation of the IL-1β transcript in patients suggests its possible role in autoimmune pathogenesis of vitiligo. We demonstrate that IL-17 promoted IL-1β secretion from keratinocytes. Mitochondrial dysfunction, which can induce the excessive production of reactive oxygen species (ROS), is emerging as a mechanism that underlies various inflammatory and autoimmune diseases. In this study, we demonstrate that IL-17 inhibits melanogenesis of zebrafish, normal human epidermal melanocytes, and B16F10 cells. IL-17 increased mitochondrial dysfunction and ROS accumulation, which was related to autophagy induction. Autophagy is needed for autophagic apoptosis of B16F10 cells induced by IL-17. To inhibit ROS generation, B16F10 cells were pretreated with N-acetyl-l-cysteine (NAC), which inhibited autophagy. 3-Methyladenine (3-MA) also had an inhibiting effect on autophagy. NAC or 3-MA pretreatments inhibited IL-17-mediated cell apoptosis. In summary, IL-17 induces the cellular stress microenvironment in melanocytes to promote autophagic cell apoptosis in vitiligo.-Zhou, J., An, X., Dong, J., Wang, Y., Zhong, H., Duan, L., Ling, J., Ping, F., Shang, J. IL-17 induces cellular stress microenvironment of melanocytes to promote autophagic cell apoptosis in vitiligo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app