Add like
Add dislike
Add to saved papers

Leptin attenuates D 2 receptor-mediated inhibition of putative ventral tegmental area dopaminergic neurons.

Obesity causes hyperleptinemia. We have previously shown that D2 receptor-mediated inhibition of ventral tegmental area (VTA) dopaminergic neurons is attenuated in diet-induced mice with obesity. Consequently, we hypothesized that high concentrations of serum leptin during obesity might modulate D2 receptor-mediated effects on VTA dopaminergic neurons. To investigate our hypothesis, we examined leptin effects on D2 receptor-mediated inhibition of putative VTA dopaminergic neurons from lean mice using electrophysiological techniques. Leptin (100 nmol/L) directly inhibited spontaneous firing in 71% of putative VTA dopaminergic neurons (leptin-responsive), whereas the remaining 29% of neurons were leptin-nonresponsive. In 41% of leptin-responsive neurons, leptin attenuated the reduced firing rate produced by quinpirole (100 nmol/L), whereas the remaining 59% of neurons exhibited no effect of leptin. In leptin-nonresponsive neurons, no significant leptin-induced effect was observed on reduced firing rate produced by quinpirole. In leptin-responsive neurons with positive leptin-induced attenuation of quinpirole effects, leptin-induced attenuation persisted for >20 min, whereas no such persistent attenuation was observed in other types of neurons. In conclusion, leptin attenuates D2 receptor-mediated inhibition in a subpopulation of putative VTA dopaminergic neurons. We suggest that leptin directly decreases, and indirectly increases, excitability of VTA dopaminergic neurons. In turn, this may contribute to a change in feeding behavior through the mesolimbic dopaminergic system during the development of obesity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app