Add like
Add dislike
Add to saved papers

Small non-coding RNAs are altered by short-term sprint interval training in men.

Small non-coding RNAs (ncRNAs) are emerging as important molecules for normal biological processes and are deregulated in disease. Exercise training is a powerful therapeutic strategy that prevents cardiometabolic disease and improves cardiorespiratory fitness and performance. Despite the known systemic health benefits of exercise training, the underlying molecular mechanisms are incompletely understood. Recent evidence suggests a role for epigenetic mechanisms, such as microRNAs, but whether other small ncRNAs are modulated by chronic exercise training is unknown. Here, we used small RNA sequencing to explore whether sprint interval training (SIT) controls the abundance of circulating small ncRNAs in human whole blood samples. Ten healthy men performed SIT three times a week for 6 weeks. After training, subjects showed marked improvements in maximal oxygen consumption and cycling performance with concurrent changes to the abundance of diverse species of circulating small ncRNAs (n = 1266 small ncRNAs, n = 13 microRNAs, q < 0.05). Twelve microRNAs altered by 6 weeks of SIT were ubiquitously expressed microRNAs and two regulated important signaling pathways, including p53, thyroid hormone and cell cycle signaling. MicroRNAs altered by 6 weeks of SIT were unchanged after a single session of SIT (n = 24, all P > 0.05). Relative to older individuals, younger subjects exhibited an increased acute SIT-induced fold change in miR-1301-3p (P = 0.02) - a microRNA predicted to target mRNAs involved in alternative splicing, phosphoprotein and chromosomal rearrangement processes (all P < 0.001). Our findings indicate many species of circulating small ncRNAs are modulated by exercise training and that they could control signaling pathways responsible for health benefits achieved from exercise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app