Add like
Add dislike
Add to saved papers

Relations between structural and EEG-based graph metrics in healthy controls and schizophrenia patients.

Our aim was to assess structural and functional networks in schizophrenia patients; and the possible prediction of the latter based on the former. The possible dependence of functional network properties on structural alterations has not been analyzed in schizophrenia. We applied averaged path-length (PL), clustering coefficient, and density (D) measurements to data from diffusion magnetic resonance and electroencephalography in 39 schizophrenia patients and 79 controls. Functional data were collected for the global and theta frequency bands during an odd-ball task, prior to stimulus delivery and at the corresponding processing window. Connectivity matrices were constructed from tractography and registered cortical segmentations (structural) and phase-locking values (functional). Both groups showed a significant electroencephalographic task-related modulation (change between prestimulus and response windows) in the global and theta bands. Patients showed larger structural PL and prestimulus density in the global and theta bands, and lower PL task-related modulation in the theta band. Structural network values predicted prestimulus global band values in controls and global band task-related modulation in patients. Abnormal functional values found in patients (prestimulus density in the global and theta bands and task-related modulation in the theta band) were not predicted by structural data in this group. Structural and functional network abnormalities respectively predicted cognitive performance and positive symptoms in patients. Taken together, the alterations in the structural and functional theta networks in the patients and the lack of significant relations between these alterations, suggest that these types of network abnormalities exist in different groups of schizophrenia patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app