Add like
Add dislike
Add to saved papers

Testing occlusal performance by using chewing simulation with virtually designed substrate.

Physically accurate deformable models based on the finite element method (FEM) are being used for a wide range of applications, from entertainment to medicine. This article describes how we applied this method in the CAD/CAM area that is concerned with reconstructing 3D models of teeth. We simulated the process of mastication by employing a deformable model that represented the substrate, and a rigid model that represented the teeth. We extended a recent approach for substrate deformation by also modelling the fracture of the substrate by the mastication process. Although including fracturing into the process allowed us to assess a mastication result, it posed new technical challenges such as defining the start of fracturing, propagating fracture through the substrate, detecting collisions between substrate pieces after fracturing, and resolving such collisions. We developed an approach that solved these challenges. The resulting simulation allowed us to compare the functionality of different occlusal designs in a mastication process. We are convinced that these simulations are an interesting tool that could be used to improve occlusal performance, especially in complete dentures, which are nowadays being more and more digitally designed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app