Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Estimating Dynamic Connectivity States in fMRI Using Regime-Switching Factor Models.

We consider the challenges in estimating the state-related changes in brain connectivity networks with a large number of nodes. Existing studies use the sliding-window analysis or time-varying coefficient models, which are unable to capture both smooth and abrupt changes simultaneously, and rely on ad-hoc approaches to the high-dimensional estimation. To overcome these limitations, we propose a Markov-switching dynamic factor model, which allows the dynamic connectivity states in functional magnetic resonance imaging (fMRI) data to be driven by lower-dimensional latent factors. We specify a regime-switching vector autoregressive (SVAR) factor process to quantity the time-varying directed connectivity. The model enables a reliable, data-adaptive estimation of change-points of connectivity regimes and the massive dependencies associated with each regime. We develop a three-step estimation procedure: 1) extracting the factors using principal component analysis, 2) identifying connectivity regimes in a low-dimensional subspace based on the factor-based SVAR model, and 3) constructing high-dimensional state connectivity metrics based on the subspace estimates. Simulation results show that our estimator outperforms -means clustering of time-windowed coefficients, providing more accurate estimate of time-evolving connectivity. It achieves percentage of reduction in mean squared error by 60% when the network dimension is comparable to the sample size. When applied to the resting-state fMRI data, our method successfully identifies modular organization in the resting-statenetworksin consistencywith other studies. It further reveals changes in brain states with variations across subjects and distinct large-scale directed connectivity patterns across states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app