Add like
Add dislike
Add to saved papers

Covalent immobilization of coagulation factor VIII on magnetic nanoparticles for aptamer development.

INTRODUCTION: Magnetic nanoparticles (MNPs) are one of the most useful particulate systems in analytical applications such as specific aptamer selection. Proteins are the most noted targets of aptamer selection. Generally, covalently immobilized protein coated MNPs are more stable structures.

METHODS: In this study, coagulation factor VIII (FVIII) was immobilized on MNPs. A silica coating provided isocyanate functional groups was considered to interact covalently with reactive groups of the protein, resulting in a stable protein immobilization. The reactions was run in dried toluene. At end, these MNPs were applied for affinity determination of a previously selected FVIII specific aptamers.

RESULTS: Immobilization of 1 mg FVIII (~ 3 nmol) on 5 mg particles was achieved with no significant particle aggregation. Using a fluorescence-based method, affinity measurement resulted in a calculated dissociation constant of 120 ± 5.6 nM for the FVIII-specific aptamer to the FVIII-coated MNPs.

CONCLUSION: The final product could be a suitable protein-coated solid support for magnetic-based aptamer selection processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app