Add like
Add dislike
Add to saved papers

New on-orbit geometric interior parameters self-calibration approach based on three-view stereoscopic images from high-resolution multi-TDI-CCD optical satellites.

Optics Express 2018 March 20
To increase the field of view (FOV), combining multiple time-delayed and integrated charge-coupled devices (TDI-CCD) into the camera and the pushbroom imaging modality are traditionally used with high-resolution optical satellites. It is becoming increasingly labor- and cost-intensive to build and maintain a calibration field with high resolution and broad coverage. This paper introduces a simple and feasible on-orbit geometric self-calibration approach for high-resolution multi-TDI-CCD optical satellites based on three-view stereoscopic images. With the aid of the a priori geometric constraint of tie points in the triple-overlap regions of stereoscopic images, as well as tie points between adjacent single TDI-CCD images (STIs), high accuracy calibration of all TDI-CCD detectors can be achieved using a small number of absolute ground control points (GCPs) covering the selected primary STI. This method greatly reduces the demand on the calibration field and thus is more time-, effort- and cost-effective. Experimental results indicated that the proposed self-calibration approach is effective for increasing the relative internal accuracy without the limitations associated with using a traditional reference calibration field, which could have great significance for future super-high-resolution optical satellites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app