Add like
Add dislike
Add to saved papers

NUSAP1 gene silencing inhibits cell proliferation, migration and invasion through inhibiting DNMT1 gene expression in human colorectal cancer.

Colorectal cancer (CRC) is one of the most common cause of cancer-related death in both female and male patients, with a high capacity for tumor migration and invasion. Recently, aberrant nucleolar and spindle-associated protein 1 (NUSAP1) expression has been reported in several cancers. However, the biological function and molecular mechanism of NUSAP1 in CRC have not been reported. Here, we demonstrated that NUSAP1 gene expression was notably upregulated in CRC tissues and cell lines (Caco2, LS174T, SW480, and LoVo). Subsequently, SW480 and LoVo cells were transfected with NUSAP1 siRNA, respectively, and the biological function of NUSAP1 was investigated. Results indicated that NUSAP1 silencing by siRNA inhibited CRC cell proliferation, and induces cell apoptosis. Moreover, NUSAP1 knockdown suppressed cell migration, cell invasion, and epithelial-to-mesenchymal transition (EMT). Furthermore, NUSAP1 silencing notably inhibited the mRNA and protein expression level of DNA methyltransferase 1 (DNMT1). DNMT1 overexpression partly rescued the effect of NUSAP1 silencing on colorectal cancer biological function. Taken together, NUSAP1 gene silencing induced cell apoptosis, and inhibited cell proliferation, cell migration, cell invasion, and EMT in colorectal cancer through inhibiting DNMT1 gene expression. These findings indicat that NUSAP1 is a promising molecular target for CRC treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app