Add like
Add dislike
Add to saved papers

Graphene particles supported on silica as sorbent for residue analysis of tetracyclines in milk employing microextraction by packed sorbent.

Electrophoresis 2018 April 3
This paper describes the use of graphene-based sorbents for determination of four tetracyclines in milk. The synthesized materials were combined with microextraction by packed sorbent (MEPS) to act as the sample preparation step. The extraction performance of these sorbents was compared to commercial phases, and graphene supported on silica provided the best results. The analytical method optimization was carried out by employing experimental design. Firstly, an evaluation of the experimental variables (elution solvent, use of EDTA, ionic force, and pH of the washing solution) was made by a 24-1 factorial experimental design. The variables sampling, washing and elution cycles of MEPS were further optimized under a full 23 experimental design. The validation parameters were determined under optimized conditions resulting in a linearity ranging from 15 to 110 μg/L with R2 values above 0.98, and LOQs ranging from 0.05 to 0.9 μg/L. The accuracy ranged from 87.9 to 118.4% and intra/inter-day precision reported by the RSDs were lower than 19%. The proposed and validated method was successfully applied to the analysis of 11 milk samples from different animals, revealing traces of tetracyclines in only two of them. This study focused on the evaluation of graphene-based sorbents combined with MEPS for tetracycline analysis provided equivalent or even better results than other proposed methods, suggesting being a sensitive, fast and reliable alternative method for the determination of tetracyclines in milk samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app