JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A novel Triclosan Methacrylate-based composite reduces the virulence of Streptococcus mutans biofilm.

The use of antimicrobial monomers, linked to the polymer chain of resin composites, is an interesting approach to circumvent the effects of bacteria on the dental and material surfaces. In addition, it can likely reduce the incidence of recurrent caries lesions. The aim of this study was to evaluate the effects of a novel Triclosan Methacrylate (TM) monomer, which was developed and incorporated into an experimental resin composite, on Streptococcus mutans (S. mutans) biofilms, focusing on the analyses of vicR, gtfD, gtfC, covR, and gbpB gene expression, cell viability and biofilm characteristics. The contact time between TM-composite and S. mutans down-regulated the gbpB and covR and up-regulated the gtfC gene expression, reduced cell viability and significantly decreased parameters of the structure and characteristics of S. mutans biofilm virulence. The presence of Triclosan Methacrylate monomer causes harmful effects at molecular and cellular levels in S. mutans, implying a reduction in the virulence of those microorganisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app