Add like
Add dislike
Add to saved papers

Amitriptyline Treatment Mitigates Sepsis-Induced Tumor Necrosis Factor Expression and Coagulopathy.

Shock 2019 March
During sepsis, the early innate response and inflammatory cytokine cascade are associated with activation of the coagulation cascade. Acute hypercoagulability can contribute to lethal sequela of vascular thrombosis, tissue ischemia, and organ failure. We investigated if amitriptyline (AMIT), an antidepressant drug with a number of anti-inflammatory effects, could ameliorate sepsis in a murine model of sepsis-cecal ligation and puncture (CLP). We hypothesized that AMIT treatment would reduce inflammation and mitigate sepsis-induced coagulopathy. Coagulation was measured using thromboelastometry and ferric chloride-induced carotid artery thrombosis. Our findings demonstrate a dynamic early hypercoagulability, followed by delayed hypocoagulability in septic mice. However, septic mice treated with AMIT were unaffected by these coagulation changes and exhibited a coagulation profile similar to sham mice. TNFα was markedly elevated in septic mice, but decreased in AMIT-treated mice. Exogenous administration of recombinant TNFα in naive mice recapitulated the acute sepsis-induced hypercoagulability profile. After sepsis and endotoxemia, peritoneal macrophages were the predominant source of TNFα expression. AMIT treatment significantly decreased macrophage TNFα expression and blunted M1 polarization. Altogether, during polymicrobial sepsis, AMIT treatment suppressed macrophage TNFα expression and the M1 phenotype, mitigating an initial hypercoagulable state, and protecting septic mice from delayed hypocoagulability. We propose that AMIT treatment is a promising therapeutic approach in the treatment of sepsis-associated coagulopathy and prevention of acute thromboembolic events or delayed bleeding complications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app