Add like
Add dislike
Add to saved papers

A Graphene-Silver Nanoparticle-Silicon Sandwich SERS Chip for Quantitative Detection of Molecules and Capture, Discrimination, and Inactivation of Bacteria.

There currently exists increasing concerns on the development of a kind of high-performance SERS platform, which is suitable for sensing applications ranging from the molecular to cellular (e.g., bacteria) level. Herein, we develop a novel kind of universal SERS chip, made of graphene (G)-silver nanoparticle (AgNP)-silicon (Si) sandwich nanohybrids (G@AgNPs@Si), in which AgNPs are in situ grown on a silicon wafer through hydrofluoric acid-etching-assisted chemical reduction, followed by coating with single-layer graphene via a polymer-protective etching method. The resultant chip features a strong, stable, reproducible surface-enhanced Raman scattering (SERS) effect and reliable quantitative capability. By virtues of these merits, the G@AgNPs@Si platform is capable for not only molecular detection and quantification but also cellular analysis in real systems. As a proof-of-concept application, the chip allows ultrahigh sensitive and reliable detection of adenosine triphosphate (ATP), with a detection limit of ∼1 pM. In addition, the chip, serving as a novel multifunctional platform, enables simultaneous capture, discrimination, and inactivation of bacteria. Typically, the bacterial capture efficiency is 54% at 108 CFU mL-1 bacteria, and the antibacterial rate reaches 93% after 24 h of treatment. Of particular note, Escherichia coli and Staphylococcus aureus spiked into blood can be readily distinguished via the chip, suggesting its high potential for clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app