Add like
Add dislike
Add to saved papers

Astraglaus polysaccharide protects diabetic cardiomyopathy by activating NRG1/ErbB pathway.

Bioscience Trends 2018 May 14
Diabetic cardiomyopathy (DCM) is one of the main cardiac complications among diabetic patients. According to previous studies, the pathogenesis of DCM is associated with oxidative stress, apoptosis and proliferation of local cardiac cells. It showed, NRG1 can improve the function of mitochondria, and thereby, increasing proliferation and decreasing apoptosis of cardiac muscle cell via ErbB/AKT signaling, also, exert antioxidative function. Besides, NRG1/ErbB pathway was impaired in the DCM model which suggested this signaling played key role in DCM. Astraglaus polysaccharide (APS), one of the active components of Astragalus mongholicus, showed striking antioxidative effect. Here, in this study, our data showed that APS can promote proliferation and decrease apoptosis in AGE-induced DCM cell model, besides, APS can decrease intracellular ROS level, increase activity of SOD, GSH-Px and lower level of MDA and NO in DCM cell model, indicating APS exerted antioxidative function in DCM model cells. Besides, western blot results revealed APS induced NRG1 expressing and the phosphorylation level of ErbB2/4. In addition, the elevated NRG1 promoted AKT and PI3k phosphorylation which indicated APS may exert its function by NRG1/ErbB and the downstream AKT/PI3K signaling. Canertinib is ErbB inhibitor. The effect of APS on proliferation, apoptosis, antioxidation and NRG1/ErbB pathway was partly abolished after the cells were co-treated with APS and canertinib. Taken together, these results suggested APS may display its protective function in DCM cells by activating NGR1/ErbB signaling pathway. And our study increased potential for prevention and therapy to DCM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app