Add like
Add dislike
Add to saved papers

Effects of multidimensional tunneling in the kinetics of hydrogen abstraction reactions of O ( 3 P) with CH 3 OCHO.

Quantum tunneling paths are important in reactions when there is a significant component of hydrogenic motion along the potential energy surface. In this study, variational transition state with multidimensional tunneling corrections are employed in the calculations of the thermal rate constants for hydrogen abstraction from the cis-CH3 OCHO by O (3 P) giving CH3 OCO + OH (R1) and CH2 OCHO + OH (R2). The structures and electronic energies are computed with the M06-2X method. Benchmark calculations with the CBSD-T approach give an enthalpy of reaction at 0 K for R1 (-2.8 kcal/mol) and R2 (-2.5 kcal/mol) which are in good agreement with the experiment, i.e. -2.61 and -1.81 kcal/mol. At the low and intermediate values of temperatures, small- and large-curvature tunneling dominate the kinetics of R1, which is the dominant path over the range of temperature from 250 to 1200 K. This study shows the importance of multidimensional tunneling corrections for both R1 and R2, for which the total rate constant at 298 K calculated with the CVT/μOMT method is 8.2 × 10-15 cm3 molecule-1 s-1 which agrees well with experiment value of 9.3 × 10-15 cm3 molecule-1 s-1 (Mori, Bull. Inst. Chem. Res. 1981, 59, 116). © 2018 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app