Add like
Add dislike
Add to saved papers

Evidence for the hook supercoiling mechanism of the bacterial flagellum.

The bacterial flagellar hook is a short, highly curved tubular structure connecting the basal body as a rotary motor and the filament as a helical propeller to function as a universal joint to transmit motor torque to the filament regardless of its orientation. This highly curved form is known to be part of a supercoil as observed in the polyhook structure. The subunit packing interactions in the Salmonella hook structure solved in the straight form gave clear insights into the mechanisms of its bending flexibility and twisting rigidity. Salmonella FlgE consists of four domains, D0, Dc, D1 and D2, arranged from inside to outside of the tube, and an atomic model of the supercoiled hook built to simulate the hook shape observed in the native flagellum suggested that the supercoiled form is stabilized by near-axial interactions of the D2 domains on the inner surface of the supercoil. Here we show that the deletion of domain D2 from FlgE makes the hook straight, providing evidence to support the proposed hook supercoiling mechanism that it is the near-axial interactions between the D2 domains that stabilize the highly curved hook structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app