Add like
Add dislike
Add to saved papers

Quionolone carboxylic acid derivatives as HIV-1 integrase inhibitors: Docking-based HQSAR and topomer CoMFA analyses.

Quionolone carboxylic acid derivatives as inhibitors of HIV-1 integrase were investigated as a potential class of drugs for the treatment of acquired immunodeficiency syndrome (AIDS). Hologram quantitative structure-activity relationships (HQSAR) and translocation comparative molecular field vector analysis (topomer CoMFA) were applied to a series of 48 quionolone carboxylic acid derivatives. The most effective HQSAR model was obtained using atoms and bonds as fragment distinctions: cross-validation q 2 = 0.796, standard error of prediction SD CV = 0.36, the non-cross-validated r 2 = 0.967, non-cross validated standard error SD = 0.17, the correlation coefficient of external validation Q ext 2 = 0.955, and the best hologram length HL = 180. topomer CoMFA models were built based on different fragment cutting models, with the most effective model of q 2 = 0.775, SD CV = 0.37, r 2 = 0.967, SD = 0.15, Q ext 2 = 0.915, and F = 163.255. These results show that the models generated form HQSAR and topomer CoMFA were able to effectively predict the inhibitory potency of this class of compounds. The molecular docking method was also used to study the interactions of these drugs by docking the ligands into the HIV-1 integrase active site, which revealed the likely bioactive conformations. This study showed that there are extensive interactions between the quionolone carboxylic acid derivatives and THR80, VAL82, GLY27, ASP29, and ARG8 residues in the active site of HIV-1 integrase. These results provide useful insights for the design of potent new inhibitors of HIV-1 integrase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app