Evaluation Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Influence of deformable image registration on 4D dose simulation for extracranial SBRT: A multi-registration framework study.

BACKGROUND AND PURPOSE: To evaluate the influence of deformable image registration approaches on correspondence model-based 4D dose simulation in extracranial SBRT by means of open source deformable image registration (DIR) frameworks.

MATERIAL AND METHODS: Established DIR algorithms of six different open source DIR frameworks were considered and registration accuracy evaluated using freely available 4D image data. Furthermore, correspondence models (regression-based correlation of external breathing signal measurements and internal structure motion field) were built and model accuracy evaluated. Finally, the DIR algorithms were applied for motion field estimation in radiotherapy planning 4D CT data of five lung and five liver lesion patients, correspondence model formation, and model-based 4D dose simulation. Deviations between the original, statically planned and the 4D-simulated VMAT dose distributions were analyzed and correlated to DIR accuracy differences.

RESULTS: Registration errors varied among the DIR approaches, with lower DIR accuracy translating into lower correspondence modeling accuracy. Yet, for lung metastases, indices of 4D-simulated dose distributions widely agreed, irrespective of DIR accuracy differences. In contrast, liver metastases 4D dose simulation results strongly vary for the different DIR approaches.

CONCLUSIONS: Especially in treatment areas with low image contrast (e.g. the liver), DIR-based 4D dose simulation results strongly depend on the applied DIR algorithm, drawing resulting dose simulations and indices questionable.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app