Add like
Add dislike
Add to saved papers

Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor.

Utilization of renewable feedstocks for the production of bio-based bulk chemicals, such as 2,3-butanediol (2,3-BDO), by engineered strains of the non-pathogenic yeast, Saccharomyces cerevisiae, has recently become an attractive option. In this study, to realize rapid production of 2,3-BDO, a flocculent, 2,3-BDO-producing S. cerevisiae strain YPH499/dPdAdG/BDN6-10/FLO1 was constructed from a previously developed 2,3-BDO-producing strain. Continuous 2,3-BDO fermentation was carried out by the flocculent strain in an airlift bioreactor. The strain consumed more than 90 g/L of glucose, which corresponded to 90% of the input, and stably produced more than 30 g/L of 2,3-BDO over 380 h. The maximum 2,3-BDO productivity was 7.64 g/L/h at a dilution rate of 0.200/h, which was higher than the values achieved by continuous fermentation using pathogenic bacteria in the previous reports. These results demonstrate that continuous 2,3-BDO fermentation with flocculent 2,3-BDO-producing S. cerevisiae is a promising strategy for practical 2,3-BDO production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app