Add like
Add dislike
Add to saved papers

CRISPcut: A novel tool for designing optimal sgRNAs for CRISPR/Cas9 based experiments in human cells.

Genomics 2018 March 30
The ability to direct the CRISPR/Cas9 nuclease to a unique target site within a genome would have broad use in targeted genome engineering. However, CRISPR RNA is reported to bind to other genomic locations that differ from the intended target site by a few nucleotides, demonstrating significant off-target activity. We have developed the CRISPcut tool that screens the off-targets using various parameters and predicts the ideal genomic target for -guide RNAs in human cell lines. sgRNAs for four different types of Cas9 nucleases can be designed with an option for the user to work with different PAM sequences. Direct experimental measurement of genome-wide DNA accessibility is incorporated that effectively restricts the prediction of CRISPR targets to open chromatin. An option to predict target sites for paired CRISPR nickases is also provided. The tool has been validated using a dataset of experimentally used sgRNA and their identified off-targets. URL: https://web.iitd.ac.in/crispcut.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app