Add like
Add dislike
Add to saved papers

Constitutive activity of the metabotropic glutamate receptor 2 explored with a whole-cell label-free biosensor.

Label-free cellular assays using a biosensor provide new opportunities for studying G protein-coupled receptor (GPCR) signaling. As opposed to conventional in vitro assays, integrated receptor-mediated cellular responses are determined in real-time rather than a single downstream signaling pathway. In this study, we examined the potential of a label-free whole cell impedance-based biosensor system (i.e. xCELLigence) to study the pharmacology of one GPCR in particular, the mGlu2 receptor. This receptor is a target for the treatment of several psychiatric diseases such as schizophrenia and depression. After optimization of assay conditions to prevent interference of endogenous glutamate in the culture medium, detailed pharmacological assessments were performed. Concentration-response curves showed a concentration-dependent increase in impedance for agonists and positive allosteric modulators, whereas receptor inhibition by an antagonist or negative allosteric modulator resulted in a concentration-dependent decrease in cellular impedance. Interestingly, constitutive receptor activity was observed that was decreased by LY341495, which therefore behaved as an inverse agonist here, a property that was heretofore unappreciated. This was confirmed by concentration-dependent modulation of LY341495 potency and efficacy by a allosteric modulators. In summary, the use of the xCELLigence system to study mGlu2 receptor pharmacology was validated. This is the first class C GPCR to be characterized extensively by such method, opening new avenues to study receptor pharmacology including inverse agonism and demonstrating its value for future drug discovery efforts of mGlu receptors as well as other GPCRs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app