Add like
Add dislike
Add to saved papers

Use of a culture-independent on-farm algorithm to guide the use of selective dry-cow antibiotic therapy.

An algorithm using only computer-based records to guide selective dry-cow therapy was evaluated at a New York State dairy farm via a randomized field trial. DairyComp 305 (Valley Ag Software, Tulare, CA) and Dairy Herd Improvement Association test-day data were used to identify cows as low risk (cows that might not benefit from dry-cow antibiotics) or high risk (cows that will likely benefit). Low-risk cows were those that had all of the following: somatic cell count (SCC) ≤200,000 cells/mL at last test, an average SCC ≤200,000 cells/mL over the last 3 tests, no signs of clinical mastitis at dry-off, and no more than 1 clinical mastitis event in the current lactation. Low-risk cows were randomly assigned to receive intramammary antibiotics and external teat sealant (ABXTS) or external teat sealant only (TS) at dry-off. Using pre-dry-off and postcalving quarter-level culture results, low-risk quarters were assessed for microbiological cure risk and new infection risk. Groups were also assessed for differences in first-test milk yield and linear scores, individual milk weights for the first 30 d, and culling and mastitis events before 30 d in milk. A total of 304 cows and 1,040 quarters in the ABXTS group and 307 cows and 1,058 quarters in the TS group were enrolled. Among cows to be dried, the proportion of cows that met low-risk criteria was 64% (n = 611/953). Of cultures eligible for bacteriological cure analysis (n = 171), 93% of ABXTS cured, whereas 88% of TS cured. Of the non-cures, 95% were contributed by the minor pathogens coagulase-negative staphylococci (n = 19/20). These organisms also accounted for 57.5% of new infections (n = 77/134). We found no statistical differences between treatment groups for new infection risk (TS = 7.3% quarters experiencing new infections; ABXTS = 5.5%), milk production (ABXTS = 40.5 kg; TS = 41.2 kg), linear scores (ABXTS = 2.5; TS = 2.7), culling events (ABXTS, n = 18; TS, n = 15), or clinical mastitis events (ABXTS, n = 9; TS, n = 5). Results suggest that the algorithm used decreased dry-cow antibiotic use by approximately 60% without adversely affecting production or health outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app