Add like
Add dislike
Add to saved papers

AuNS@Ag core-shell nanocubes grafted with rhodamine for concurrent metal-enhanced fluorescence and surfaced enhanced Raman determination of mercury ions.

Analytica Chimica Acta 2018 August 15
Mercury ion (Hg2+ ) is a highly hazardous and widespread pollutant with bio-accumulative properties. Although the existing Hg2+ detection methods have high sensitivity and reliability, whereas there have few reports concerning bimodal detection for Hg2+ with one sensor. Toward this goal, a novel sensor based on rhodamine derivatives (RhD) grafted AuNS@Ag core-shell nanocubes (CSN) has been synthesized and shown the bimodal detection capabilities with metal enhanced fluorescence (MEF) and surface enhanced Raman scattering (SERS) for Hg2+ . Herein, resultant CSN acts as the signal enhancing material; RhD was modified on the outside of the shell to ensure the signal sensitive of the CSN-RhD hybrids. In this work, we investigate the size- and shape-dependent SERS activity of plasmonic CSN comprised of AuNS as cores and Ag cuboids as shells. The SERS activity of CSN with spherical core was found to increase with the increasing thickness of the Ag cubic shell. Sequel, under an optimized condition, a display of strong MEF and SERS signals of the resulting mixtures with increasing of Hg2+ concentrations was observed. The proposed bimodal sensor showed excellent performances for Hg2+ along with wide linear range of 0.001-1000 ppm and 0.01-1000 ppm as well as the relatively low detection limit of 0.94 and 5.16 ppb for MEF and SERS assays, respectively. Furthermore, the ability of the sensor to detect Hg2+ was also confirmed in adulterated milk samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app