Add like
Add dislike
Add to saved papers

Interaction of von Willebrand factor domains with collagen investigated by single molecule force spectroscopy.

von Willebrand factor (VWF) is a huge multimeric protein that plays a key role in primary hemostasis. Sites for collagen binding, an initial event of hemostasis, are located in the VWF-domains A1 and A3. In this study, we investigated single molecule interactions between collagen surfaces and wild type VWF A1A2A3 domain constructs, as well as clinically relevant VWF A3 domain point mutations, such as p.Ser1731Thr, p.Gln1734His, and p.His1786Arg. For this, we utilized atomic force microscopy based single molecular force spectroscopy. The p.Ser1731Thr mutant had no impact on the VWF-collagen type III and VI interactions, while the p.Gln1734His and p.His1786Arg mutants showed a slight increase in bond stability to collagen type III. This effect probably arises from additional hydrogen bonds that come along with the introduction of these mutations. Using the same mutants, but collagen type VI as a binding partner, resulted in a significant increase in bond stability. VWF domain A1 was reported to be essential for the interaction with collagen type VI and thus our findings strengthen the hypothesis that the VWF A1 domain can compensate for mutations in the VWF A3 domain. Additionally, our data suggest that the mutations could even stabilize the interaction between VWF and collagen without shear. VWF-collagen interactions seem to be an important system in which defective interactions between one VWF domain and one type of collagen can be compensated by alternative binding events.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app