Add like
Add dislike
Add to saved papers

The ocean noise coherence matrix and its rank.

An expression for the cross-spectral density matrix of ocean noise naturally separates into a Toeplitz part and a Hankel part [Harrison (2017). J. Acoust. Soc. Am. 141, 2812-2820]. The Toeplitz part is shown to be substantially rank-deficient for all practical acoustic cases, which has implications for adaptive beam forming. The influence of the Hankel part on passive fathometry is investigated, and its effect on adaptive beam forming is shown to be weak or negligible. Numerical demonstrations of these findings including beam patterns and eigenvalue spectra derived via circulant matrices are given based on a simple half-space with a Rayleigh reflection coefficient. Two sets of experimental data are revisited in this context, deriving eigenvalue spectra, beam patterns, and passive fathometry impulse responses with conventional and adaptive processing and differing amounts of averaging. The solution to a long-standing puzzle of processing inconsistency is suggested.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app