Add like
Add dislike
Add to saved papers

Cyclosporin A distribution in cholesterol-sphingomyelin artificial membranes modeled as Langmuir monolayers.

Cyclosporin A (CsA), a hydrophobic peptide, mainly known for its immunosuppressant properties, has shown a broad range of biological activities, including antimalarial action. Since CsA was found to be active on membrane level, it was subjected for investigations involving membrane models. Our former studies on interactions between CsA and different membrane lipids using Langmuir monolayer technique indicated its affinity for sphingomyelin (SM). Inspired by this finding we have extended our experiments on multicomponent systems and performed systematic investigations of CsA behavior towards artificial membranes containing different mutual proportion of sphingomyelin and cholesterol (Chol). Langmuir monolayer results have been complemented with in-situ films structure visualization applying Brewster angle microscopy (BAM) and, after films transfer onto solid support, atomic force microscopy (AFM). Our results show that cyclosporin A introduced to SM:Chol mixed monolayers distributes differently, depending on SM-to-Chol proportion. In raft-mimicking (2:1) stoichiometry, even distribution of the drug within SM:Chol matrix was observed. However, in SM:Chol model membranes of different proportion (3:1; 1:1; 1:2), containing either the excess of unbound sphingomyelin or cholesterol in addition to model lipid raft domains, introduction of CsA induced a phase separation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app