Add like
Add dislike
Add to saved papers

Attenuation of TNF-induced neutrophil adhesion by simvastatin is associated with the inhibition of Rho-GTPase activity, p50 activity and morphological changes.

Neutrophil adhesion to the vasculature in response to potent inflammatory stimuli, such as TNF-α (TNF), can contribute to atheroprogression amongst other pathophysiological mechanisms. Previous studies have shown that simvastatin, a statin with known pleiotropic anti-inflammatory properties, can partially abrogate the effects of TNF-induced neutrophil adhesion, in association with the modulation of β2 -integrin expression. We aimed to further characterize the effects of this statin on neutrophil and leukocyte adhesive mechanisms in vitro and in vivo. A microfluidic assay confirmed the ability of simvastatin to inhibit TNF-induced human neutrophil adhesion to fibronectin ligand under conditions of shear stress, while intravital imaging microscopy demonstrated an abrogation of leukocyte recruitment by simvastatin in the microvasculature of mice that had received a TNF stimulus. This inhibition of neutrophil adhesion was accompanied by the inhibition of TNF-induced RhoA activity in human neutrophils, and alterations in cell morphology and β2 -integrin activity. Additionally, TNF augmented the activity of the p50 NFκB subunit in human neutrophils and TNF-induced neutrophil adhesion and β2 -integrin activity could be abolished using pharmacological inhibitors of NFκB translocation, BAY11-7082 and SC514. Accordingly, the TNF-induced elevation of neutrophil p50 activity was abolished by simvastatin. In conclusion, our data provide further evidence of the ability of simvastatin to inhibit neutrophil adhesive interactions in response to inflammatory stimuli, both in vivo and in vitro. Simvastatin appears to inhibit neutrophil adhesion by interfering in TNF-induced cytoskeletal rearrangements, in association with the inhibition of Rho A activity, NFκB translocation and, consequently, β2 -integrin activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app