Add like
Add dislike
Add to saved papers

Identification of differentially expressed microRNAs during preadipocyte differentiation in Chinese crested duck.

Gene 2018 June 31
MicroRNAs (miRNAs) are considered key players in the regulation of a broad range of biological processes. Specifically, miRNAs have been reported to play an important role in the process of adipogenesis. In this study, we constructed a model of adipogenesis by isolating preadipocytes (WCC) derived from adipose tissue and preadipocytes after 72 h differentiation (WCT) in vitro. Deep sequencing of miRNAs expressed in WCT and WCC cells was conducted; we identified 105 differentially expressed miRNA candidates (fifty up-regulated and fifty-five down-regulated). Among them, twelve were novel miRNAs, and ninety-three were previously known miRNAs. Furthermore, seven miRNAs were selected for expression confirmation by reverse transcription quantitative PCR (RT-qPCR); the results showed that the differential expression of miRNAs between the two groups was consistent with our sequencing results. Of them, miR-223, miR-184-3p, and miR-10b-5 showed a strong correlation to adipogenesis. Using target prediction, we predicted that the 105 differentially expressed miRNAs targeted 4155 unique mRNAs. The prediction of targets of differentially expressed miRNAs revealed that the miRNAs participated in the regulation of multiple adipogenesis-related signalling pathways, including the peroxisome proliferator-activated receptor (PPAR) signalling pathway, insulin signalling pathway, fatty acid biosynthesis, and fatty acid degradation. Overall, our findings provide a background for further research into miRNAs and lay a foundation for the prediction and analysis of miRNAs related to adipogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app