Add like
Add dislike
Add to saved papers

MRI gradient-echo phase contrast of the brain at ultra-short TE with off-resonance saturation.

NeuroImage 2018 July 16
Larmor-frequency shift or image phase measured by gradient-echo sequences has provided a new source of MRI contrast. This contrast is being used to study both the structure and function of the brain. So far, phase images of the brain have been largely obtained at long echo times as maximum phase signal-to-noise ratio (SNR) is achieved at TE = T2* (∼40 ms at 3T). The structures of the brain, however, are compartmentalized and complex with a wide range of signal relaxation times. At such long TE, the short-T2 components are largely attenuated and contribute minimally to phase contrast. The purpose of this study was to determine whether proton gradient-echo images of the brain exhibit phase contrast at ultra-short TE (UTE). Our data showed that UTE images acquired at 7 T without off-resonance saturation do not contain significant phase contrast between gray and white matter. However, UTE images of the brain can attain strong phase contrast even at a nominal TE of 106 μs by using off-resonance RF saturation pulses, which provide direct saturation of ultra-short-T2 components and indirect saturation of longer-T2 components via magnetization transfer. In addition, phase contrast between gray and white matter acquired at UTE with off-resonance saturation is reversed compared to that of the long-T2 signals acquired at long TEs. This finding opens up a potential new way to manipulate image phase contrast of the brain. By accessing short and ultra-short-T2 species, MRI phase images may further improve the characterization of tissue microstructure in the brain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app