Add like
Add dislike
Add to saved papers

Craniofacial structure alterations of foetuses from folic acid deficient pregnant mice.

INTRODUCTION: Craniofacial development in mammals is a complex process that involves a coordinated series of molecular and morphogenetic events. Folic acid (FA) deficiency has historically been associated with congenital spinal cord malformations, but the effect that a maternal diet deficient in FA has on the development of other structures has been poorly explored. In the present study, the objective was to describe and quantify the alterations of craniofacial structures presented in mouse foetuses from dams fed a FA deficient (FAD) diet compared with controls that were given a regular maternal diet.

MATERIAL AND METHODS: E17 mouse foetuses were removed from dams that were fed with a control diet or with a FAD diet for several weeks. Foetuses with maternal FAD diets were selected for the study when they showed an altered tongue or mandible. Histological sections were used to quantify the dimensions of the head, tongue, mandibular bone and masseter muscle areas using ImageJ software. The muscles of the tongue, suprahyoid muscles, lingual septum, submandibular ducts, and lingual arteries were also analysed.

RESULTS: The heads of malformed foetuses were smaller than the heads of the controls, and they showed different types of malformations: microglossia with micrognathia (some of which were combined with cleft palate) and aglossia with either micrognathia or agnathia. Lingual and suprahyoid muscles were affected in different forms and degrees. We also found alterations in the lingual arteries and in the ducts of the submandibular glands. Summarised we can state that pharyngeal arches-derived structures were affected, and the main malformations observed corroborate the vulnerability of cranial neural crest cells to FA deficiency.

CONCLUSION: The present study reveals alterations in the development of craniofacial structures in FAD foetuses. This study provides a new focus for the role of FA during embryological development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app