Add like
Add dislike
Add to saved papers

Leaf-age dependent response of carotenoid accumulation to elevated CO 2 in Arabidopsis.

Carotenoids contribute to photosynthesis, photoprotection, phytohormone and apocarotenoid biosynthesis in plants. Carotenoid-derived metabolites control plant growth, development and signalling processes and their accumulation can depend upon changes in the environment. Elevated carbon dioxide (eCO2 ) often enhances carbon assimilation, early growth patterns and overall plant biomass, and may increase carotenoid accumulation due to higher levels of precursors from isoprenoid biosynthesis. Variable effects of eCO2 on carotenoid accumulation in leaves have been observed for different plant species. Here, we determined whether the variable response of carotenoids to eCO2 was potentially a function of leaf age and the impact of eCO2 on leaf development by growing Arabidopsis in ambient CO2 (400 ppm) and eCO2 (800 ppm). eCO2 increased plant leaf number, rosette area, biomass, seed yield and net photosynthesis. In addition, eCO2 increased carotenoid content by 10-20% in younger emerging leaves, but not in older mature leaves. Older leaves contained approximately 60% less total carotenoids compared to younger leaves. The age-dependent effect on carotenoid content was observed for cotyledon, juvenile and adult phase leaves. We conclude that younger leaves utilize additional carbon from enhanced photosynthesis in eCO2 to increase carotenoid content, yet older leaves have less capacity to store additional carbon into carotenoids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app