Add like
Add dislike
Add to saved papers

Curcumin protects rabbit articular chondrocytes against sodium nitroprusside-induced apoptosis in vitro.

The preventive and therapeutic effects of curcumin on degeneration of articular (joint) cartilage diseases have rarely been investigated. In the present study, the protective effects of curcumin against sodium nitroprusside (SNP)-induced chondrocyte apoptosis were evaluated and the underlying molecular mechanisms were elucidated. Curcumin was used to as a co-treatment with SNP in chondrocytes, and changes occurring in the cells were observed and evaluated. It was shown using a cell counting kit-8 (CCK-8) assay that curcumin protected the viability of chondrocytes against SNP damage. NO (nitric oxide) from SNP could be scavenged by curcumin. Flow cytometry and Hoechst 33342 staining showed that curcumin not only inhibited the cell apoptosis in a concentration-dependent pattern but also ameliorated the SNP-induced nuclear chromatin damage and reduction of the mitochondrial membrane potential in chondrocytes. In SNP-treated chondrocytes, curcumin downregulated the expression of Bax and cleaved caspase-3 but upregulated the expression of Bcl-2, as shown by western blot. Meanwhile, curcumin administration also protected extracellular matrix (ECM) synthesis and prevented its degradation. Taken together, these results support the hypothesis that curcumin exerts its protective effect on chondrocytes against SNP-induced apoptosis, at least partly, via blocking the mitochondrial-dependent apoptotic pathway and maintaining the metabolic balance of ECM. Thus, curcumin may be a potential candidate to be used as a unique biological agent for the prevent and treatment of osteoarthritis (OA).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app